What is the Atom Made of?

Did you ever see the movie “The Incredible Shrinking Man”? If you have, did you ever wonder what would happen to him when he gets so small that he would be the size of an atom? And if so, could he get any smaller?

Maybe we have the answer because atoms are particles that exist in nature that cannot be broken down any further into smaller components. Everything we see around us is made of atoms, from tables and chairs to people and pandas. 

What Makes Up the Atom?

Illustration of the Atom
Atoms consist of three basic particles: protons, electrons, and neutrons. Nucleus. This atom has a neutral charge as it contains the same amount of protons and electrons. Photo: iStock

Comparatively speaking, atoms contain mostly empty space, but don’t let that fool you into thinking they are not important. The components of the atom and what makes up the atom are fundamental to our understanding of how matter is assembled. That includes living organisms, both here on earth and elsewhere. 

Now let’s talk about the components. A typical atom consists of a nucleus in its center. This nucleus contains neutrons and protons (together they’re called nucleons). Protons have a positive charge. Neutrons have neither positive nor negative charges. They are ‘neutral’.

Surrounding the nucleus are electrons, which are bodies outside of the nucleus and orbit around it, the same as our planets orbit their sun. Besides the size difference in this comparison, the only major difference is that the planets orbit the sun because of gravity, and electrons orbit their nucleus because of magnetism.

Note: The above scenario is simplified to vision the structure of the atom. The real fact is that electrons do not orbit the nucleus as the planets do. Their actions are more complex than that. See our article on Quantum Theory for a better understanding of how electrons maneuver around the atom’s nucleus.

The Electron

An electron orbits the nucleus of the atom. They are negatively charged particles. The electrons are the only particles outside of the atom’s nucleus.

Neutral Atoms

A neutral atom doesn’t have any charge, so it doesn’t interact with other atoms. You can think of it as a bag of protons, neutrons, and electrons that just float around in space. Most neutral atoms are made up of an equal number of protons, neutrons, and electrons. For example, hydrogen has one proton, one neutron, and one electron. Helium atoms have two protons, two neutrons, and two electrons. This is why we usually refer to these atoms as neutral.

The Proton 

Periodic table
Image by Calua from Pixabay

Protons are mainly found in the nucleus, although a few may be found in the outer electron orbit. The number of protons in an atom is what makes it what it is. For example, the elements in the periodic table have numbers associated with them. The number on the upper right corner defines its atomic number; that is, it tells us the number of protons in that element. Atomic weight is the number of protons and neutrons together.

Neutrons

The neutron’s only job is to protect the proton from becoming too positively charged. It doesn’t matter if the atom has too many or too few neutrons; it’s fine either way. The neutron doesn’t interact with electrons or anything else outside the nucleus, so it’s usually just along for the ride.

The valence electrons (see below) of an atom are the electrons that are available to form chemical bonds with other atoms. In general, valence electrons are those that can be shared in their atomic orbitals.

Each main group element has a fixed number of valence electrons, which makes it easier to predict how likely an element is to react with another one and whether or not a given element can act as a reducing agent. Combining all of this information, we can deduce the oxidation state (or valence) of each element and predict whether or not they will react with one another based on these findings. Let’s take a closer look at what these valence electrons are and what role they play in chemical reactions.

Ions

Any time an atom loses or gains an electron, it becomes charged. If it loses an electron, it becomes positively charged. because there are more protons in the atom than electrons. If it gains an electron, it becomes negatively charged. 

When atoms gain or lose an electron, they can bond together with other ions to form other elements; thereby creating a new atom or molecule.

Note: Regardless of the number of electrons or protons that are lost or gained, the ‘makeup’ of the atom is associated with the number of protons that are in the atom, as designated in the upper right corner of each element of the periodic table. 

So What are Valence Electrons?

Illustration of an atom's valence electrons
Photo: Pixabay

These are electrons that are in the outermost shell of an atom and if these atoms have less than 8 electrons in this shell, they will look to find other atoms to bond with so that their outer shells can reach 8 electrons.

This is the Octet Rule, which states that atoms with less than 8 electrons in their outer shell will tend to bond with other atoms so that they can share their valence shells and have 8 electrons, hence, the “octet (8)” rule.

From our explanation of ions above, it is these electrons that are participating in the chemical reactions (bonding) with other atoms, since they are the farthest away from the nucleus and thus, have the least magnetic force attached to them. In other words, can easily get detached or pulled from a nearby atom.

So, it is these electrons that are the ones that cause the sharing of electrons with other atoms.

Valence Proximity

The electrons that are closer to the nucleus are referred to as core electrons since they aren’t as likely to participate in chemical reactions. The core electrons are essential to the existence of an atom because without them the atom would collapse in on itself. However, they’re not as likely to be involved in chemical reactions with other atoms because they’re so close to the nucleus.

Valence Summary

The valence electrons are the outermost electrons in an atom that is available to form chemical bonds with other atoms. The number of valence electrons for each element is fixed, and we can use the location of these electrons to predict how likely it is for an atom to bond with another. The more stable the core electrons are, the more difficult it will be for an atom to accept its electrons. If you’re studying chemistry and need to understand how chemical reactions work, it’s important to understand what valence electrons are and how they are used during chemical reactions.

All Together Now

The negative charge of the electrons and the positive charge of the protons are what maintain the orbit of the electrons around the nucleus. This is referred to as an electrostatic charge, or electromagnetic force, or to put it another way, it is the attraction of the positive charge from the negative charge of the electrons that causes this orbit to exist.

Now, let’s drill down to more specifics of the atom’s components and how their respective charges make up different types of atoms. 

Conclusion

Atoms are the smallest particles of matter that cannot be broken down into smaller components. Everything we see around us is made of atoms. Atoms are mostly empty spaces, but they’re fundamental to our understanding of how matter works. A typical atom consists of a nucleus with neutrons and protons (together called nucleons) inside it, as well as electrons that orbit the nucleus. The electrons have a negative charge; the nucleons have a positive charge. 

Neutral atoms are made up of an equal number of protons, neutrons, and electrons. Ionic compounds are made up of positively charged ions and negatively charged electrons, and they have a strong attraction to other atoms and molecules. Electrons are negatively charged particles that orbit the nucleus, making them useful tools. Atoms are the building blocks of everything in the universe, and they are fundamental to our understanding of how matter works.

The Hoax of the The Moon Landing Hoax

Illustration of the accusation that the moon landing was a hoax
Cartoon illustration of the 1969 moon landing, with a depiction that is nothing more than a Hollywood stunt. IStock

There are space aliens among us, the CIA was involved in the JFK assassination, the US government was behind the 9/11 attacks, and the conspiracy list goes on.

One that was most disturbing was by conspiracy theorist host talk show Alex Jones who said that the tragedy at Sandy Hook Connecticut never happened.

Fortunately, Alex Jones got his due and maybe next time, if he still has a job, he will think twice before purporting such absurd statements.

So much for our shock and awe introduction, but let’s tone it down a bit and concentrate on one particular conspiracy theory.  For this one, called the moon landing hoax, we are going to take this accusation and rip it apart, one by one. Not because we have to, but by showing how ridiculous these theories are, and hopefully, it will have a domino effect on those that continue to fall prey to these preposterous speculations.

“I Am Telling You! The Moon Landing Was a Hoax”

So they say that Neil Armstrong never set foot on the moon and that it was all staged in an unknown location on Earth, with cameras, and props located somewhere in the United States. They go as far as saying that the Disney company staged it in Hollywood.

Time to Debunk!

The Waving Flag

Astronaut on the Moon with flag
Photo by NASA on Unsplash

It is said that when the US flag was put on the moon, the photographs and videos show that it appears to be moving. The moon has no air or wind, so some say that the landing must be on a Hollywood set and is completely fake.

There are currently six flags on the moon, from each successful moon landing. The flags are made out of nylon and are held up by four interlocking aluminum poles. These poles were designed by many engineers which resulted in a kit named The Lunar Flag Assembly

Different soil and other aspects such as radiation from the sun needed to be researched to send up a functioning flag and flagpole. The original flag appears to be moving, because the top horizontal pole that holds up the top of the flag out, was not extended by the astronauts. This is why the flag looks rippled in photos and gives the illusion of movement in the NASA video. The flag only moves when it is acted upon and touched by the astronauts (inertia) or when a rocket blast blows by it. 

Needless to say, if this was on a Hollywood set, it would be inside, so where is the wind? In addition, if this was such an elaborate hoax, does anyone think they would be that stupid to overlook such an obvious ‘fault’?

Two Shadows

In some photographs, there appear to be two shadows from the astronauts or the Lunar Module. This is easily explained. 

Since the Earth is much larger than the moon, it casts a much greater reflection of light from the Sun. In doing so, another shadow appears, which is a direct result of Earth Light (concerning moonlight, but that light is much dimmer). The angle of the shadows is directly related to the time of day, the same as they would appear here on Earth; hence, two shadows appear.

Moon Dust 

The way the dust flies from the Apollo 16 footage from NASA shows how the rover kicks up the dust. The dust forms a rooster tail, because of the low gravity environment and of no atmosphere on the moon.

This tail is a product of the lunar environment. Dust on the Earth cannot fly the way it does on the moon. This was confirmed by a study done by two scientists at the Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado in Boulder. Apollo 16 footage was turned into a mathematical formula that proved that if the dust on Earth was kicked up from a rover it would land very differently. 

Enormous Effort

To discredit them further, one should consider the enormous work that would need to go into this, even if it was just a Hollywood set.  A whole film crew would be required to make this ‘movie’, but this would not just be any movie, it would be a film designed to fool the entire world, including scientists, astronomers, and electrical and mechanical engineers to name a few, and if it was run by the government, a certain amount of politicians as well that would probably work its way up the ladder.

This does not include the renting of the studio and all the bureaucracy that would go with it. In all, there would be no less than a few hundred people hired to fake this event. For so much equipment and so many people involved, why has no one come to speak out?

Yes We Were Really There

Besides the hundreds of people who would have been involved in the ‘Hollywood’ planning, the opposite is also true, as 400,000 Nasa employees were hired to accomplish this amazing task some 50 years ago. They even brought back moon rocks!

It is also an insult to the amazing astronauts who have sacrificed their lives for our country, NASA, and the people of the world who live here.

The Apollo 11 crew: Armstrong, Michael Collins, and Buzz Aldrin.
The Apollo 11 crew

There is such indisputable proof that we landed on the moon that it is almost impossible to say it was fake.  

This author had the pleasure of meeting Buzz Aldren to discuss his amazing journey and looking back to 1969 when I was a young boy, I can vividly remember staying up with my father to watch this incredible feat of engineering and determination. It was real to us then and it is real to us now! 

 

EV FAQs and Figures

Note: This article is about fully electric vehicles. Not hybrids. 

Illustration of an EV being charged

Photo iStock, Credit: Golden Sikorka

Electric Vehicle Costs

Sales

How Much Do EVs Cost to Buy?  

Electrical vehicles can run from $30,000 on the low end to over $100,000 on the high end, with Tesla being the major seller with 1,917,450 vehicles sold since it was first introduced. Elon Musk who owns Tesla brought in a revenue of $53.8 billion for the year 2021. Aside from Tesla, other manufacturers jumped on the bandwagon to make electric vehicles such as BMW, Nissan, Chevrolet, Ford, Volkswagen, and Kia. 

Charging

How Much Does It Cost to Charge an EV from Your House? 

White Tesla Model 3 Charging at Home
Austin, Texas, USA – 2-1-2021: Tesla Model 3 charging at home in front of the house on the L2 at-home charging that is provided with every Tesla vehicle

According to our calculations, it can cost between $10 – $15 per charge to the recommended 80% when your EV is near zero battery capacity, which equates to 230 miles. That is less than 1/2 the cost of what a conventional gas car would cost to drive the same distance. If your battery has more than zero juice, your electrical cost would be even less to reach the 80% – 230-mile range.

How Much Does It Cost to Charge an EV Outside of Your House?

Electric Vehicle being charged in a garage
Photo by Michael Fousert on Unsplash

The cost to charge your EV depends upon several factors, but in general, expect to pay between $20 – $30 for a full charge, which is much better than a conventional gas car expense, since you can add a good 200 – 300 miles back to the battery. Try getting 200 miles for $30 on a conventional car!

Electrical Charging an EV

What is the Difference Between Level 1 and Level 2 Chargers?

There are some major differences. A level 1 charger can be plugged into any 110-volt outlet, but charges at about twice as long as a level 2 charger, which connects to a 220/240-volt outlet. If you recall our article on voltage, it is the amount of current that is ‘pushed’ out. Like a water faucet. The more you move the lever, the faster the water comes out. So a level 1 charger that uses 110 volts, the amount of current is, on average 15 amps. A level 2 charger can draw up to 60 amps, depending on the size of the breaker in the house.

How Long Does It Take to Charge an EV?

Illustration of EV going to get charged
Image by Mohamed Hassan from Pixabay

That depends upon the charger you are using. Currently, there are two types available. A Level-1 charger that connects to any 110-volt outlet. This can take over six hours to fully charge an EV’s battery.

Then there is a Level-2 charger. Charging of this type usually takes about three-four hours to reach full charge.

Shortly, Level-3, called high-speed chargers, will cut this charging time in half or more.

Does Fully Charging Mean It Charges Up to 100%?

No, all EV battery manufacturers agree that these batteries should not be charged to 100% because it will cause degradation of the battery in the long run. Charging to 80% is the recommended charging level and is usually set as the default for most EVs.

You can override this setting if you are planning a long trip but it is not recommended to keep it at the 100% charge level continuously.

So when we say we are fully charging our EV, it means that we have charged up to the 80% mark.

What if My Battery Goes to Zero Miles Left and I Am Sill on the Road?

EV dashboard showing zero mileage let
Zero mileage does not necessarily mean your EV will stop in its tracks, but you should seek an EV station ASAP! Photo SS.

That’s why we recommend not to let your EV battery go below 30%, like the scenario we mentioned above, but we do understand that there are circumstances when this can happen. Chances are you will still have some power left to drive another few more miles. The mileage algorithms are not perfect and only give you an estimate of how much charge you have, but these estimates are fairly accurate as far as estimates are concerned,

When you see that warning notice on your dashboard, you should immediately shut down all accessories (radio, air conditioner or heater, phone charging, etc.) so that the least amount of power is being drained from the battery, but you should look for a charging station immediately!

The Weather and the Seasons

Do the Seasons Have an Effect on EV Batteries?

Car driving in winter snow
Image by Pexels from Pixabay

Yes, especially in winter. If the temperature goes below 40 F degrees, expect the mileage to diminish faster. Case in point: It was late November. A couple was leaving Manhattan to go to Long Island. Their GPS said it was a 27-mile drive and 45 miles were left on the vehicle, but halfway through their drive, the mileage counter dropped to 10 miles. Fortunately, they found an EV station along the way and were able to charge the car.

This is why we always suggest not letting your EV battery get that low. Once you see it is below 30%, you should charge it.

Can I Charge My EV in the Rain?

Lectron 240V 40 Amp Level 2 Electric Vehicle (EV) Charger on ground in the rain
This Lectron 240V 40 Amp Level 2 (EV) Charger has a rubber cap that is protecting water from getting into the charging port. Photo: SS

If the charger has protection such as non-conductive shielding at the port section, then you should be ok if the charger is left outside in the rain.

Check with your charging manufacturer to determine if your home charger is rainproof, but as with all electrical devices, it is always safer to keep these chargers away from anything wet.

Travel and Long Trips

How Many Miles Can I Get on a Full Charge?

Most EVs in the medium-cost range get about 230 miles on an 80% charge. The manufacturers do not recommend charging to 100% as it decreases the integrity of the battery.

Some of the higher ones, such as the Tesla Model S can get up to 394 miles when the batter is at full capacity. On the other hand, a Kia Niro, a great EV with excellent reviews will get about 253 miles on a full charge. And the 2023 Chevy Silverado will have a 200 kWh battery that can take you a good 400 miles before recharging.

Can I Go on Long Rides With My EV?

Car driving on lonely road
Image by Автошкола ТЕХНИКА from Pixabay

You can but it is not advisable at this time; however, if you are bent on taking long drives with your EV, it is highly recommended that you plan your trip with charging along the way as your main priority. Check the highway’s rest areas to see if they have charging stations, but be aware that if you do have to charge your EV during your trip, you may have to stay a while, possibly a good three to four hours at each station.

As President Biden’s infrastructure bill goes into effect, you will see more and more charging stations appear, especially along the highways, but remember, charging an EV is not like pumping gas into a car. You will be there for a few hours each time you charge your vehicle.

Of course, you don’t have to fully charge your car. If you could just add another 100-150 miles, that would cut down the time spent waiting. 

Either way, plan so that you can find places to go while the car is charging. Some of these locations may have a restaurant where you can have a long dinner or some towns may have charging ports on the street or in garages, or shopping mall parking lots. As you wait you can traverse through the many stores to kill time.

Then there are the hotels. Call ahead to find out if they have EV portals and if not, where is the closest one?

Shortly, more and more charging stations will be added along the highways and private locations such as housing and hotels. Additionally, in Biden’s Build Back Better plan, he has allocated $5 billion to increase the US infrastructure with over 500,000 new EV portals, and that doesn’t include the additions by private enterprises.

Tell Me More About the Mileage Estimates

A rideshare driver was on his way home from his last drop-off in Manhattan. He previously didn’t realize that the drive for this customer was further out than he thought and he saw that he had only 35 miles left on his battery.

Since he lived just outside the city limits in Long Island, he was sure that he would be able to get home before the battery capacity runs out. He was wrong. And this was during the warmer weather.

When the driver was on the highway, only 13 miles from his home, a warning light came on and said he has zero miles left to drive. What was saying 13 miles all of a sudden went to zero, meaning he had no more battery life in his car.

What happened to that missing 13 miles can only be explained by the fact that the mileage algorithms keep refreshing and new estimates materialize. So it is strongly advised to monitor your mileage with a give or take of 10- 15 miles either way. Thinking this way may help you decide when you should make your next charge.

This is especially true for winter driving as we have stated.

EV battery warning light advising low battery
If a warning like this comes on, shut off all unnecessary power and look for an EV station immediately! Photo SS.

Plan Ahead!

If you are going to purchase an EV, plan out your expenses first against what it would cost for a gas car. Then plan out what you plan to do with the car. Will you be using it for local driving or going to work every day or is your main purpose going on long trips? At this current time, we would recommend that you purchase your EV for local driving or work. Whatever you choose, enjoy your ride!

What are the Advantages of Owning an Electric Car?

Of course, the main reason for owning an EV is the savings you get by not having to gas up your car, especially at the prices today. Additionally, EVs don’t have a combustion engine, so there are fewer parts to become defective during your ownership. EVs are said to help with the environment as well and they run very quietly.

What are the Disadvantages of Owning an Electric Car?

The initial expense of purchasing one is what keeps many away who would otherwise buy one. Then there is the cost of having a 220-240 volt connection installed into your home circuit box, which can run from $600 to $1000. 

If you live in an apartment, you may run into an additional issue if the building or development you are in does not have an EV portal available, but more and more locations and communities are having EV stations installed such as shopping malls, public garages, and of course, many car dealerships.

Do EVs Need Oil Changes?

No. Cars with gas engines need maintenance. The oil used to keep the pistons running smoothly in the chamber of the engine need to be changed every six months or 3,000 miles. Since no gas engine runs the car, no oil change is needed.