Red Beryl – A Rare Gemstone

Red Beryl mineral on a red background
Image by pixabay.comusersalekseynemiro

You may already know about bluish-green beryl – yes, it’s emerald. And the green-blue beryl, which is aquamarine. And of course, about their pink to the orange-pink cousin, morganite. 

But what about another variation of the extremely rare mineral that is one of the gem connoisseurs’ favorite stones?  If you haven’t guessed it yet, that rare crystal is red beryl. 

According to the Utah Geological Survey estimates, for every 150,000 gem-quality diamonds unearthed, only a single crystal of red beryl is found. 

In this post, we look at the rare and precious – red beryl. 

A Precious and Rare Gemstone 

Red beryl is often known as a one-source gemstone. While the crystal has been found at a few locations worldwide, including Utah, New Mexico, and Mexico, there is only a single location in the entire world where you can find crystals of red beryl that are suitable for gem cutting.

Red beryl can only be found in the Wah Wah Mountains, Utah. In comparison, the crystals extracted from the other locations are only a few millimeters in length and are too small to be used as gemstones. 

But Why is Red Beryl So Rare?

The formation of the red beryl crystal requires a specific geochemical environment. Some of the essential elements required for the formation of red beryl include beryllium and manganese. Apart from the abundance of these minerals, the correct geochemical conditions are also critical, facilitating the crystallization process.

Furthermore, fractures and cavities are also another critical requirements for the appropriate growth of red beryl crystals. Hence, red beryl remains one of the rarest crystals in the world. 

Red Beryl Properties 

Red Beryl in a crystal perched on white rhyolite matrix
1.5 cm, doubly-terminated, gemmy and lustrous crystal perched on white rhyolite matrix.Photo: Rob Lavinsky, Wikipedia, CC

If you look at the physical properties of the rare and precious stone, it gets its rich red color from the traces of manganese. Moreover, it scores 7.5-8 on Mohs’ scale of hardness, making it a suitable material for everyday wear. 

The largest known crystals of red beryl are around 5 cm long and 2 cm wide; however, most gem-quality crystals are less than 1 cm long. You can hardly find a red beryl crystal that’s heavier than one carat, and most of the red beryl crystals weigh around 0.25 carat or less.

Most of the known red beryl crystals have a rich saturated red color, allowing tiny-faceted stones to display a bright red color. Because of its rarity, red beryl can sell for over one thousand dollars per carat. Only a few red beryl specimens with a weight of more than a carat can cost several thousand dollars.

Here are a few things you should know about the rare and precious red beryl. 

Gem Quality Red Beryl Comes From a Single Source 

As mentioned earlier, red beryl is also known as a single source gemstone because gem-quality red beryl comes from what is known as the Ruby Violet mine in the Wah Wah Mountains, Utah. This member of the beryl family was first found in 1904 by Bixby. Following the early discovery, Lamar Hodges found another deposit of red beryl from what came to be known as the “Ruby Violet” mine in the Wah Wah Mountains of Utah.

It is still the only location in the world where you can find gem-quality red beryl. While the precious crystal can be found in other parts of the U.S. and Mexico, the crystals are too small and imperfect. As of now, the mine is closed for extraction, and there is no commercial production of gem-quality red beryl.

It Isn’t Easy to Find Good Quality, Large-Sized Red Beryl 

The largest known gem-quality red beryl weighs 8 carats. Moreover, 2-carat red beryl is considered as rare as a 40-carat diamond. Moreover, the largest red beryl crystal is 5 cm long and 2 cm wide when most of the gem-quality crystals are less than 1 cm long and weigh 0.25 carats or less. Furthermore, the average carat weight of the red beryl crystals is around 0.08 carat, whereas a 0.40-carat red beryl crystal is considered large, and 1 carat is exceptionally rare. 

In addition to being small, there is a significant amount of red beryl production that is not of gem quality. Of all the output of red beryl crystals from Wah Wah mountains, only 10% of it can be faceted. Moreover, less than 5% of the output was considered gem-quality material. 

All of this indicates that the red beryl is one of the rarest members of the beryl family, and it is exceptionally tough to find a large-sized, gem-quality red beryl. 

There is Always a Demand for Red Beryl 

Despite its rarity and difficulty in finding a large-sized crystal, there is always a demand for this precious stone. One of the primary reasons for the high demand is, of course, the rarity of the gemstone. There has always been a demand for red beryl from the American market, but there is an increasing demand for the precious stone from Japan and other Asian countries over the years. 

There is also a strong demand for the crystal from mineral collectors as its unique hexagonal shape, and the display of vivid red color is of exceptional interest to them. 

The Rarity and Demand Always Reflect in Price 

Since red beryl is a rare and precious stone that has an increasing demand in the U.S. and Asia as well, this factor heavily reflects its price. A red beryl crystal weighs more than a carat (which is exceptionally rare) and can cost several thousand dollars. However, its price also depends on several factors, including its color, size, and clarity. 

Final Words 

Red beryl is a rare and precious crystal which gem-quality crystals are coming from a single source. As of now, there is no commercial extraction of red beryl, which is why you can expect the price of red beryl to skyrocket in the next few years. 

5 Rarest Crystals in the World

Close up of opal minerals
Image by Christoph Schütz from Pixabay

Humans and crystals have been together for quite some time. The earliest records of crystals being collected by humans can be dated back to over 100,000 years ago. However, as technology improved, humans gained more information on naturally occurring crystals found beneath the Earth’s surface. 

As of now, there are over 200 known varieties of crystals and gemstones. Along with some of the most precious crystals, including ruby, diamond, and sapphire, there are numerous other crystals, and some of them are incredibly rare. 

This post looks at some of the rarest crystals worldwide in no particular order of rarity. 

Tanzanite

TanzaniteTanzanite is one of the most beautiful blue crystals, a variety of a mineral named zoisite; however, the crystal doesn’t get its name from the mineral. Instead, it is named after the location of its discovery which is a small area near the foot of Mount Kilimanjaro in Tanzania. So far, it is the only known source of the crystal, which makes it rare and extremely valuable. 

Since its discovery in 1967, the crystal has gained popularity among jewelers and gemstone enthusiasts. However, according to estimates, the reserves of this precious crystal would last for only 20 to 30 years before the supply deletes, which will make the stone significantly more rare and valuable than diamonds unless a new source is discovered.

If you look at the properties of this crystal, it ranks between 6 and 7 on Mohs’ scale of hardness which makes it ideal for everyday wear. Moreover, its highly prized blue color may closely resemble blue sapphire, a favorite crystal for jewelry. However, heat treatment can significantly enhance its blue coloration, making it more unique and strikingly beautiful. Since there is only one known source of the crystal, Tanzanite is a highly valuable crystal with an average per-carat price of $1,200 for top-quality crystals.   

Poudretteite 

Another extremely rare crystal is Poudretteite which was discovered during the 1960s by the Poudrette family at their quarry near Mount St. Hilaire in Quebec, Canada. The crystal was named after the name of the family that first discovered it. However, the crystal was not officially recognized as a new mineral until 1986. Hence for a long time, there were no reported discoveries of Poudretteite. 

Several decades later, a gem-quality specimen of the crystal was first documented in Burma. Since then, only very few crystals have been found. The crystal is so rare that clean crystals over 1 carat are hardly ever found. Moreover, the largest known Poudretteite weighs 9.41 carat. Since it’s very rare to find a crystal of this weight, the largest known Poudretteite sits at the Smithsonian National Museum of Natural History.   

Benitoite 

Benitoite, the state gem of California, is another rare crystal that is only mined in a small area of California near the San Benito River. Hence, the gemstone got its name Benitoite. The crystal was first discovered in the early 1900s by the geologist George D. Louderback.

However, it was not until 1985 that the crystal became the official gemstone of California. The major source of the rare crystal near the San Benito River was closed for commercial mining in 2006. While trace quantities of the crystal were discovered in Japan, Australia, and Arkansas, California is the only known source that allows feasible mining of the crystal, making Benitoite another rare crystal in the world. 

Benitoite has a deep blue color that shows unique fluorescence when caught under UV light. If you want to purchase this rare crystal, make sure you find a trustworthy and legitimate source. Moreover, you need to go for stones with a medium body tone and a cut that enhances the stone’s fire. Crystals that are too dark in color will not reflect the light well. Similarly, a color that is too light will have a washout-out appearance. Furthermore, you shouldn’t expect to find stones that are heavier than 3 carats. 

You can find a high-quality medium blue Benitoite with an average price of $3,800 per carat. Stones that are less than 1 carat will have a relatively much lower price. 

Black Opal 

 

Coobe Pedy Opal Doublet Mineral
Coobe PedOpal Doublet Minera

Opals are usually creamish-white and can display rainbow-colored inclusions as light reflects on the stone. However, black opals are different and rare. Most of the black opals are mined in the Lightning Ridge area in New South Wales, Australia. Since it is extracted from a single source, black opals are the rarest of all opals found in Australia. 

Black opals have a naturally black body color. However, you can also find variations of the stone in green, blue, and brown colors. 

The most precious black opals are the ones with a darker color and brighter inclusions. The most precious black opal of all times is known as the “Aurora Australis,” which was found in 1938 in the Lightning Ridge area. The 180-carat black opal had an estimated worth of AUS$ 1,000,000.  

Taaffeite 

Last on the list is another rare crystal, Taaffeite, which is also considered the rarest crystal globally. As of now, there are only 50 known specimens of this rare crystal, and most of them are held in private and geological collections. 

The crystal was discovered by chance by Austrian-Irish gemologist Edward Taaffe. Hence the crystal got its name. In 1940, the geologist bought a box of spinels, but he noticed that the mauve-colored spinel didn’t react to light in the same way as the rest of the spinels did; he sent it for further examination. The results revealed that the mauve-colored spinel was an unknown gemstone with no known source.

A few years later, Taaffeite was announced as a naturally occurring mineral. As a result, several other collectors re-examined their spinel collections and found a few more rare crystal specimens. Finally, the crystal source was tracked down, which revealed that most of the crystals came from Sri Lanka, whereas a handful was also found in China and Tanzania.

This brings an end to the list of the five rarest crystals in the world. There are several other rare crystals around the world, such as Alexandrite, Padparadscha sapphire, and many more that will hardly ever make an encounter with the general public, but they will continue to be rare and precious crystals that will be of immense value to people. 

Novarupta – The Most Potent Eruption of the 20th Century

Image by Kanenori from Pixabay

It happened on June 6th, 1912!

The Novarupta-Katmai volcanic eruption in Alaska in 1912 became one of the most powerful eruptions of the 20th century. Even 109 years later, its status as one of the largest volcanic eruptions still remains.

In this post, we look at how it happened and the possibility that history might repeat itself again. 

The Eruption

On the morning of June 6th, 1912, Alaska residents were getting ready to start their upcoming fishing season. Back then, the population in the Alaska Peninsula was much lower than it is today. However, a few things never change, and earthquakes in the region are one of them. Even at that time, earthquakes were common in Alaska because of the region’s geological instability. 

As people were used to living in the region, over time, they realized that the earthquakes were not only getting more frequent but also stronger. Because of the frequency and intensity of these quakes, the two remaining families in the village left their homes for a safer place. 

And that’s when it happened. Around midday on June 6th, the skies over Katmai darkened and what happened next continued for the next 60 hours. The area didn’t see the sun during all these hours of a continuous volcanic eruption. 

Throughout the 60 hours of the constant eruption, the volcano spewed out around 6.7m3 of ash particles around 20 miles into the stratosphere (which extends around 30 miles above the earth’s surface). The ash-covered an area of around 3000 sq. miles, and the ash fell in amounts up to a foot that changed a nearby vast green valley into a wilderness known as the Valley of Ten Thousand Smokes

Impact of the Eruption

The region’s inhabitants were among the first people to experience the direct impact of the eruption. It was so loud that the blast was heard around 750 miles away. Moreover, the impact was not limited to sound. It had a major visual impact as residents witnessed a thick cloud of ashes that quickly rose towards the sky. 

Within the first few hours, this thick layer of ash began falling from the sky onto the nearby town of Kodiak. As the eruption continued for the next three days, the ashes covered the town up to one foot deep. As a result, the region’s inhabitants were forced to take shelter indoors as the outdoor environment was suffocating, making it difficult to breathe. The damage further continued as some of the buildings collapsed due to the heavyweight of the volcanic dust.

The impact was not limited to that region either. Within the next few days, the ash cloud traveled over western Canada and to several western U.S. states. By June 17th, the cloud was found in Algeria and then continued to spread to other regions, including China and India. While there were no deaths reported from the eruption, there was a lot of indirect impact in terms of loss to plants, animals, marine life, and agriculture, which continued for several years. 

The Formation of Valley of Ten Thousand Smokes

Novarupta Volacano
Valley of Knife Creek. Erin McKittrick, Ground Truth Trekking

Following the eruption, the National Geographic Society started sending expeditions to Alaska to investigate the damage.

During one such expedition in 1916, a few researchers traveled inland to the eruption area and found out that the valley of Knife Creek was completely barren.

Moreover, the ash was still hot, and thousands of jets of steam could be seen from the ground. Inspired by this observation, the valley was known as the “Valley of 10,000 Smokes”.

The Resulting Katmai Caldera and Novarupta Dome

During the initial observations, the Katmai Caldera volcano was originally thought to be a source of the eruption. However, it was a long time after the incident that researchers identified the original source as the Novarupta volcano. 

Can History Repeat Itself?

Novarupta is now silent and has been for quite some time. The last eruption reported from this volcano was the one in 1912 however, if you look at the history of Novarupta, it has erupted at least seven times in the last 4,000 years. Moreover, since the Alaska Peninsula is located on an active convergent boundary, we can expect future volcanic eruptions. Furthermore, given the location of Novarupta, it is likely that future volcanic eruptions will have a severe local and global impact, similar to what happened to Pompeii in 79 AD from the Mount Vesuvius volcano.

The local impact of potential volcanic activity anywhere can lead to a significant loss of life. Due to the potential impact of volcanic activity in this area of Alaska, the United States Geological Survey and others are closely monitoring these volcanoes. 

Furthermore, the impact of any future eruptions can have a devastating effect on the global climate. Studies indicate that a volcanic blast of this magnitude can modify the global surface temperature patterns and rainfall levels in several parts of the world.

Another possible reason to monitor these volcanoes is the danger of any future eruption on commercial air traffic. Jet engines experience enormous air pressure, and flying through the air containing fine ash particles can have a similar effect as sandblasting, which can cause extensive damage to the aircraft. Therefore, it is estimated that any future eruptions from Novarupta halt commercial air traffic across North America.

What Can We Do About It?

Unfortunately, eruptions like Novarupta are one of the natural disasters that we cannot prevent. However, the most we can do to control the situation is to assess the potential impact and develop a plan of action to minimize losses. With a history to look back to, there is a lot that we can learn from the eruption of 1912 and improve our chances of minimizing damage, injury, and death.

What is Iron?

What is Iron?

Iron ore in rock form
iron ore on a rocky base

Did you know that iron is a healthy nutrient for our bodies as well as the main ingredient in the manufacture of steel?

Before we venture into the types of iron, let’s first examine its properties. Iron is a mineral with the symbol Fe and atomic number 26. On the periodic table, it belongs to the first transition series, which reflects a change in the inner layer of electrons, but we’ll leave that for the chemists since the chemical compound of this material is beyond the scope of this article; however, if you’d like to learn more about a material’s transition series, click here.

Iron is the most common element on Earth when referenced by mass and is very prominently found in the Earth’s outer and inner cores. It is the fourth most common element in the Earth’s crust, but the process to extract it requires kilns or furnaces capable of reaching a temperature of 2,730 °F or higher.

A Little Bit of Iron History

The Bronze Age (c. 3300–1200 BC) is characterized by the use of bronze as the metal of choice to create art, tools, and weapons and was the first time metals were used for these purposes. Prior to this period, the stone was used as tools and weapons; hence, the Stone Age.

Interestingly enough, the Bronze Age also brought us the first writing systems and the invention of the wheel. Indeed, an intriguing period of creative thought for sure.

Enter Iron

Say goodbye to bronze and hello to iron; hence, the Iron Age, which started around 1200 BC, but before the Iron Age was coined, there are occasions when iron was found to be used much earlier. One of the most ancient iron historical accounts was that of ancient Egyptians where iron beads dating back to 3200 B.C. were found to be made from meteorites as iron is abundant in outer space also.

Iron for Nutrition

OK so iron is a mineral rock, but it is an important nutrient for our bodies as well. If you have an iron deficiency, you can possibly acquire anemia and also fatigue that affects the ability to perform physical work in adults.

So how much iron do you need on a daily basis? For most people, an adequate amount of iron is consumed daily via the foods that we eat, but to determine your specific iron needs you can see a chart and information here. One person told us that he eats yogurt and raisins every day. Raisins contain a certain amount of iron. 

Red Blood Cells
“Red blood cells” by rpongsaj is licensed under CC BY 2.0

Do you know why our blood is red?  It is because there is an interaction between iron and oxygen within the blood creating a red color. Learn more about red blood cells and iron here.

To be sure you have enough iron, check with your doctor to confirm you are not deficient.

Iron for Infrastructure

Once we enter the 19th century, we come upon new uses for iron besides artifacts and weapons. It was discovered that this mineral can be used for building purposes and with the advent of the industrial revolution, where items were being mass-produced, the manufacture of iron became very economical.

Iron in its pure form is not used for building construction, but when other elements are mixed in with it, it becomes an acceptable form for building bridges and buildings.

Cast Iron

Cast iron is an alloy of pure iron, containing 2 to 4% carbon and other impurities, such as sulfur and phosphorus, but it still lacks good tension capabilities, as it maintains a brittleness; however, it does have relatively good compressive strength and hence, it was used during the 18th and 19th centuries for infrastructure.

The_Iron_Bridge
WikipediaCommons William Williams The Iron Bridge, Coalbrookdale, Shropshire

Cast iron structures were initially found in the UK, where The Iron Bridge in Coalbrookdale, Shropshire, England was built in 1781 was the first large-scale cast-iron structure to be constructed.

Cast iron was used in the 19th and 20th-century buildings as well. In fact, there is a whole section in New York City that is called the Cast Iron District, also known as SOHO.

Wrought Iron

Wrought iron is also an iron alloy with a much lower carbon content than cast iron.  It is a tougher material than cast iron and is also malleable, ductile, and corrosion-resistant.

Wrought iron was a step above cast iron and since it was malleable, it was given the name wrought since it could be hammered into shape while it remained hot. It is a prerequisite to mild steel, also called low-carbon steel, the first of the steel alloys. 

Early on, wrought iron was refined into steel. In the 1860s, as ironclad warships and railways were built with these iron alloys, but with the advent of the Bessemer process, making steel became less costly to make, wrought iron was eventually halted to make way for the even less expensive and stronger iron alloy called steel.

Conclusion

Besides being an essential component for healthy blood in our bodies, iron became an essential component for weapons and later, building materials.

As such, numerous bridges and buildings have been constructed during the 18th, 19th, and 20th centuries, but as the industrial revolution advanced and the making of materials became automated, new alloys of iron were created, specifically, steel and this, along with concrete led to the construction of buildings, bridges, and skyscrapers we see today all over the world.

6 Longest Non-Polar Glaciers Around the World

Glaciers, large masses of dense ice, are formed in high-altitude regions where the accumulation of snow is far greater and faster than the melting process. Over time, the layers of snow crystallize and form ice. The process of formation of glaciers takes centuries and even millennia. Surprisingly, glaciers are not just a unique feature of the polar caps but they are also found in many non-polar regions of the world. High mountain ranges in the former USSR, Pakistan, and the Americas are also home to some of the world’s largest non-polar glaciers. Below is a list of the seven longest non-polar glaciers in the world.   

Fedchenko Glacier, Tajikistan 

The world’s longest glacier outside the polar world is the Fedchenko glacier situated in the Central Asian country of Tajikistan. The glacier is around 45 miles long and covers an area of 350 square miles. The Fedchenko Glacier flows north from the ice field of Revolution Peak and receives ice from dozens of other smaller glaciers. The thickness of ice in the middle of the Fedchenko glacier is approximately 3,280 feet. The giant mass of ice can cover a distance of up 26 inches every day and forms the headstream of River Surkhab and the Amu Darya. 

It was discovered in 1871 by a Russian expedition and is named after the Russian explorer A.P Fedchenko. Parts of this iceberg were explored later in 1928. Over time, the glacier has experienced a significant loss of ice. Climate change and global warming have dramatically reduced their size since the second half of the last century. 

Siachen Glacier, Indo-Pak Border 

The Siachen is the second-longest non-polar glacier in the world lying in the Karakoram Range near the border of India and Pakistan. It is 47 miles long and covers an area of 270 square miles. The region is home to many smaller glaciers and a number of fast-flowing surface streams.  

Climate change has significantly affected almost every part of the world and the Siachen glacier is no exception. Between the years 1989 and 2009, this area of ice was reduced by 2.2 square miles. Human presence in the region has further accelerated the melting, as this mountain of ice has been a source of conflict between military conflict for decades. The highest battlefield on Earth provides freshwater which enters the River Indus of Pakistan and the Ganges in India.

Biafo Glacier, Pakistan 

The Biafo Glacier is another long non-polar glacier located in the Karakoram range in Pakistan. The 40-mile long mountain in Gilgit-Baltistan meets Hispar Glacier, another 30-mile long glacier, and forms the largest glacial system outside the polar region. This ice formation acts as a bridge between the two ancient kingdoms of the mountains; The Nagar and Baltistan. The Biafo glacier provides a trek with spectacular sights and traces of wildlife all along.  

The glacial system is largely affected by the changing global climate. The rising temperature has destabilized the movement of these ice formations and has altered the level of rain and snowfall in the region; consequently, these changes have resulted in flooding and intense heat waves not only in Pakistan but in other neighboring countries as well. 

Bruggen Glacier, Chile 

The Bruggen Glacier, also known as the Pio XI Glacier, is located in southern Chile. With a length of 40 miles, it is the fourth largest glacier in the non-polar region and the longest glacier in the Southern hemisphere.  The glacier continued to advance towards the sea and covered a distance of more than three miles between 1945 and 1976. 

Despite being one of the largest glaciers in the nonpolar region of the world, the Bruggen glacier is one of the least studied glacial areas in the world. However, considering its pattern of movement, it can be concluded that the glacier experienced periods of enhanced movement followed by retreat periods. This effect is in addition to climate change which is negatively affecting the glaciers around the world. 

Baltoro Glacier, Pakistan 

The Baltoro glacier is located in the mountain range of the Karakoram in the Baltistan region of northern Pakistan. It covers an area of 23 square miles and the length of the centerline is more than 35 miles. The second highest mountain in the world, K2 is located around 7 miles north of the tongue of the main glacier. 

Despite its location in a remote and politically unstable region of Pakistan, this glacier is extensively studied by geologists. This glacier is of unique importance to geologists because of its extensive debris cover. 38% of the area of the glacier is covered with debris. When it comes to these types of ice formations, debris accumulation follows a certain pattern of increasing thickness. Ongoing land sliding and mudflow has led to an increase in the thickness of debris in the Baltoro glacier. As of now, the debris thickness in Baltoro glacier has reached almost 10 feet, which is a major concern for geologists. 

South Inylchek Glacier, Kyrgyzstan, and China 

Another tourist-friendly destination, the South Inylchek Glacier is located on the borders of Kyrgyzstan and China. With a length of over 60 miles and more than 300 square miles, the Inyichek glacier is the sixth-longest nonpolar glacier. It is divided into two sections and covers more than 100 peaks of varying height with snow and ice. 

It is a place of incredible natural beauty where climbers around the world can enjoy the trek along with breathtaking aerial views. 

 

Acid Rain and the Effect on the Environment

Oil Refinery
Photo: Graphic Stock

Although arguments have surfaced about how much climate change is affecting our environment during these politically contentious years, one thing is for certain:  The burning of fossil fuels, the eruption of volcanoes and rotting plants all release harmful gases. When these gases react with water, oxygen, and other substances in the environment, it results in the production of acid. As the winds blow, this acidic content may spread over hundreds and thousands of miles.

Like the domino effect, the acid then falls from the atmosphere and enters the water system. This results in contamination of the water and subsequently, it affects fish and other species in the water,  which can result in contamination of the entire food chain.

When the water is used by other animals or for the cultivation of crops, both the animals and human beings bear the consequences. Acid rain also corrodes away the trees and affects their ability to absorb nutrients from the soil and take up water.

Most of the acid rain today is a result of human activities. And since everything in the environment is closely linked to each other, if something harms one part of the environment, everything else gets affected. Let’s have a detailed look at how acid rain affects the environment. But first, it is important to understand what acid rain is.

What is Acid Rain?

Some natural activities such as rotting vegetation and volcanic activities result in the release of harmful gases. Human activities such as the burning of fossil fuels also result in the release of compounds like sulfur dioxide and oxides of nitrogen. When these gases are released into the air, they react with other substances such as water and oxygen. This reaction results in the formation of acidic pollutants and can easily become a part of the rain, snow and fog.

Normal rain has a pH value between 5.0 and 5.5. So it is slightly acidic. But when acidic pollutants become a part of the rain, it becomes more acidic than normal and is known as acid rain.

Effects of Acid Rain on the Environment 

Nature depends on balance. There is a certain percentage of acidic content present in the environment, which is normal, but as one noble writer put it quite eloquently and to the point: “Too much of anything is not good for you”; hence, an overabundance of acidic content will have a negative impact on the environment with which we live.

Effects on Plants and Trees

Acid rain affects plants and trees in multiple ways. When the acidic pollutants are absorbed in the soil, it removes the essential minerals and nutrients. As a result, plants and trees do not get adequate nutrition. Acid rain also allows aluminum to seep into the soil. This affects the ability of the trees to absorb water which is essential for their growth.

Another way through which acid rain affects the trees is by hindering their ability to absorb sunlight. The acidic fog and air do not allow the absorption of sunlight through the leaves. Since the basic requirements for the growth of plants are not met, the trees eventually die.

Effects on Marine and Wildlife

Photo of the ocean
Photo: Graphic Stock

The effects of acid rain are most obvious on the marine ecosystem. As the contaminated water flows through the soil, it can bring along soil that is rich in aluminum to the streams and lakes. Thus, the streams and lakes develop more acidic water along with a higher content of aluminum.

Some marine plants and animals are more resistant to acidic water. However, species that are sensitive to high acidic content suffer greatly due to acid rain. The eggs of most species of fish cannot hatch in an acidic environment. Also, some species of adult fish can actually die.

In cases where the fish can tolerate acidic water, most of the other animals and plants they feed on might not survive in that environment. As a result, the fish die due to inadequate nutrition.

While acid rain directly affects marine species, it indirectly affects birds and other animals as well. Acid rain is known to be the biggest reason for the decline of the population of some species of birds including wood thrush. It also affects animals that depend on marine life for survival. Mammals including bears which heavily depend on fish need to find an alternate source of food due to the decreasing population of these types of fish.

Effects on Humans

The presence of sulfuric and nitric acid in the environment can make the air hazy. This is the reason why acid rain is a primary contributor to the formation of fog and smog. As far as the effect on humans is concerned, walking in acid rain is no more damaging than walking in normal rain. However, the presence of pollutants in the air can have a harmful effect on human health. The presence of acidic pollutants affects the quality of air. The sulfate and nitrate particles in the air can affect the function of the heart and lungs. Thus, acid rain is one of the major causes of increasing respiratory problems in humans including asthma, bronchitis and pneumonia.

Conclusion

Apart from living things, acid rain is known to affect non-living things as well. It can corrode buildings, statues and other man-made structures. Though sulfur dioxide and nitrogen oxide are not greenhouse gases, they definitely have an important effect on the recent climate change as both these gases have serious effects on the environment. Since the primary source of these gases comes from burning fossil fuels, by reducing the reliance on fossil fuels, we can control the damaging effects of acid rain.

 

Life in Outer Space – A Mathematical Approach

Milky Way Galaxy
Photo by Arnaud Mariat on Unsplash

Is There Really Intelligent Life Out There?

One of our previous articles discussed the minerals of Star Trek, giving rise to the hope that there is extraterrestrial life out there, but the real discussion about ET’s existence is a loaded subject. 

For this article, we are going to focus on what the mathematical formulas tell us. The ones developed by astrophysicists; in other words, what are the odds that there really is intelligent life on other planets?

As difficult it is to comprehend that the sun fuses hydrogen and helium every second, resulting in the power of 100 billion atomic bombs, we need to go even further and try to comprehend the immense size of our universe.

It is estimated that there is an average of 1 – 2 billion stars in any recorded galaxy and there are over 2 trillion galaxies in the universe. If 10% of each galaxy contains a solar system, that is, it contains a star with planets revolving around it, then we can estimate that each galaxy has between 100 – 200 million solar systems.

Outer Space Ailen
Photo by Stephen Leonardi on Unsplash

If 1% of the stars in each solar system has a planet just distant enough from their sun where life could evolve, we could have 1 – 2 million possible planets that could contain life. And if 1% of these planets have the right ‘ingredients’ to build intelligent life. then there is the possibility that there exist 10,000 stars that could have planets with intelligent life in each galaxy.

Cutting the odds even further, let’s take 10% of this result, which would equate to the possibility of 1,000 stars with intelligent life in each galaxy.

That would mean that there could exist 1,000 x 100,000,000,000,000 (galaxies) = 1,000,000,000,000,000,000 (1 Quadrillion) planets with intelligent life. How many is that? Take a look at this numerical comparison.

If we use the estimate of 200,000,000 galaxies in the universe, well, that would mean ET lives in over 2 quadrillion planets in our universe.

Don’t even try to comprehend how many fusion reactions occur in the universe every second. Fuhgeddaboudit!

What About the Scientific Formulas?

The above calculations were based on a general assumption, but have the experts really gave this serious thought? Of course!

American astronomer and astrophysicist Dr. Frank Drake developed a formula that he presented at a meeting in Virginia in 1961 and it is called the Drake Equation, which calculates the possibilities of life on other worlds within our own Milky Way galaxy.

Drake Equation
Nasa Photo

We won’t go into the particulars, but in a general sense, it is based on calculating our assumptions above but uses trigonometry to formulate a much more explicit and precise determination of ET’s existence. For you, science and math connoisseurs, feel free to give it a shot!

Just maybe Men in Black had it right!

 

What is Concrete?

What is Concrete?

Concrete Blocks
Photo by uve sanchez on Unsplash

Ever notice that just about every building has a concrete foundation?  There is a very good reason for this and it is not about aesthetics. Concrete has enormous compressive strength, meaning that it is an excellent material for holding up the weight that is above it. 

Concrete is not just used for foundations, but also for columns, beams. slabs and just about anything where there is a load-bearing issue. Load bearing meaning an element that supports the weight above it. The amount of weight that the load-bearing element would support would depend upon how many concrete columns (or other concrete supporting materials) are available to support the whole load.

For example, a 30-story building has 10 supporting columns on the ground. That would mean that the weight is evenly distributed across each of the 10 columns or mathematically speaking, each concrete column would support 0.333 (10/30) of the load (building).

Another probably more identifiable example is the load-bearing walls in a house. If you live in a house, you have probably come aware of where your load-bearing walls are. These are the walls that actually hold up the house; however, for frame houses, concrete is not the usual load-bearing material, but heavy wood or steel instead. 

A concrete column
Concrete column supporting the highway above. Photo by SS

In short, concrete is an excellent source for withstanding the heavy forces that are above it or more formally stated as an excellent compression material.

Did you know that concrete also gains more strength as it ages? With that said, let’s take a look at just what this compressive material is actually made of.

What is Concrete Made Out of?

Concrete is a mixture of air, water, sand and gravel and the percentages of these elements are usually 20% air and water, 30% sand called fine aggregates and 40% gravel, with 10% being the cement; that is, 10% being the ‘glue’ that keeps all those other materials together. Remember, from our article on cement, it is just the binding material for the assembly of concrete. When the cement is mixed with water, it is called paste

This proportion is called the 10-20-30-40 Rule; however, the exact percentages of the materials can vary depending on the combination of the concrete mixture, including the type of cement and other factors that we will explain in this article.

How are the Proportion of Materials that Form Concrete Determined?

So we know that concrete is a mixture of paste and aggregates and sometimes rocks. The paste coats each of the aggregates and as it hardens (the process is called hydration), concrete is born until it becomes a rock-solid mass, capable of withstanding a load much heavier than itself, but if the proportion of water and paste is not correct, this rock-solid mass can deteriorate causing unwanted and potentially dangerous consequences.

The trick is to carefully proportion the mix of the ingredients and much of it depends on the ratio of water to cement and this ratio is calculated by the weight of the water divided by the weight of the cement. A low water-content ratio yields high-quality concrete, so it is best to lower the ratio as much as possible without sacrificing the integrity of the concrete.

If the ratio results where there is too much water in the mixture, the aggregates become thinned out, resulting in weakening the concrete and we can figure out what that would mean.

Conversely, If there is not enough water in the mix, the water will evaporate too fast, comprising the integrity of the concrete and resulting in it being weak as well.

What is the Strongest Concrete Mixture Ratio?

1:3:5 which is cement and aggregates (in this case, the aggregate is broken into sand (3) and gravel (5) and this is considered the ratio that would create the strongest concrete.

How Much Time is Allocated Before the Finished Concrete is Used at the Construction Site?

There is a limit to how long the concrete can be poured after it is mixed. In the US, the limit is 60 minutes from the time the water mixes with the cement to the time of delivery to the construction site. 

A safe time frame is up to 90 minutes, then the integrity of the concrete will start to deteriorate. That is why we see concrete mixers right at the construction site as no time is lost between the mixture and the pouring.

What About Reinforced Concrete?

As the name applies, when steel (usually using steel bars, called rebars) is placed inside the slab where the concrete is going to be poured, it reinforces the strength of the concrete.

How Does it Reinforce the Concrete?

We have been discussing compression strength; that is, how strong the material is when a heavy load is placed on it, but we haven’t discussed tensile strength, which is the opposite of compression.

Tensil strength represents the strength material can endure when a force tries to pull on it. The reason why compression is so important when using concrete is that that is its main purpose – to hold up heavy loads, but concrete does have a limit on how much pull can be leveled on it and there are situations where the tensile strength of concrete is put to the test. The weather being one factor, but there are more.

Enter Steel

Reinforced Steel Slab
A construction worker working on a reinforced steel slap where the concrete will be poured. Photo by SS.

By integrating the rebars inside the concrete, the concern about stretching the concrete is greatly minimized. The combination of concrete and its accompanying reinforcing steel bars successfully manages these situations, because of steel’s high tensile strength; hence, you have a perfect storm of compressive and tensile strength in reinforced concrete (RC).

What Happens if the Reinforcing Steel is Not Inside the Concrete?

Cracking of the concrete surfaces can occur, subsequently causing aesthetic issues, but if the tensile yield is really great, (e.g. a strong pull on the concrete) the situation can become unsafe, so without the steel rods to compensate for this pull, you will find cracks in the concrete or worse.

Conclusion

Concrete is a mixture of sand, water, aggregates and cement. The amount of any of these elements will determine the strength of the concrete. Timing also plays a role as the concrete must be readily mixed within 90 minutes max, but 60 minutes is the usual requirement before being poured into its foundation or another element such as a column or slab.

By placing steel bars which is a mesh of steel wires (rebar) inside the concrete, the tension issue is resolved by aiding the concrete under tension.

So the next time you are walking in a building, especially a large structure such as a skyscraper, give thanks to the materials that allow you there, as well as the people who created allowed it to happen!

 

How Cement is Made?

What is Cement?

Solider pouring the fine powdery cementIf you were to say “I tripped on a cement block”, would you be wrong?

The answer is yes because there is technically no such thing as a ‘cement’ block, but there are concrete blocks; that is to say, cement is nothing more than the ‘glue’ that binds the materials that make up the concrete block, which is usually sand and gravel. So if you were to say “I tripped on a concrete block”, you would then be correct.

According to Wikipedia, cement sets, hardens and adheres to other materials to bind them together.In simple terms, cement is the centerpiece of what keeps the concrete intact. 

What Materials are Cement Made of? 

The sand and gravel are called aggregates, and it is these materials that are bound together but remember, cement is not the material, it is the glue. So what makes up the cement? 

The ingredients are mainly limestone and clay, which are extracted from quarries from around the world. Of course, the process of making cement is not that simple. The limestone is heated with clay to 2,640 °F in a kiln (an insulated chamber). This process is called calcination, which liberates molecules of carbon dioxide from the calcium carbonate (the main ingredient of limestone) to form calcium oxide, commonly referred to as quicklime

It is here where the quicklime chemically combines with the other materials to make a hard substance, called ‘clinker‘. Gypsum is then added to make Portland cement, the most common type of cement used, which is referred to in the industry as OPC. 

How does the Limestone Mixture Process Work?

The limestone rock is crushed in a machine appropriately called a crusher which reduces the limestone to a size of about six inches maximum. It is then fed into the second crusher where it is further reduced to under three inches. The mix is conveyed and then sent to a raw mill bin to be ground down even further.  

In these bins are two chambers. One that dries the limestone and clay mix and the other that grinds it via hot gasses. Then, once all dry, it is moved to the grinding chamber called a ball mill.  Here a cylinder contains steel balls and rotates which causes the balls to fall back into the cylinder and onto the limestone mix; hence, grinders. 4 to 20 revolutions per minute is the general rotation of the cylinder, which is dependent upon the diameter of the ball mill.

A Newcome Engine

What’s left when the grinding process is done is a product of fine and coarse material. The coarse material is useless in that state and is called reject where it is returned back to the ball mill for additional grinding. A machine called a separator does this part. 

Having the limestone and clay grounded down to a fine powder is still not enough to complete the cement process. The mixture must then enter a device called a cyclone which is used to separate the fine grounded material from existing gases that still exist in it.

Then, the hot gas and fine materials enter a multistage “cyclone”. This is to separate the fine ground materials from the gases.

The result – a clean, fine powdery material and is renamed kiln feed. 

Next, the feed is heated via a process called sintering, which is when the chemical bonds of the material are broken down using heat, and once complete, a new substance is formed called clinker.

Clinker nodules for the production of cement
Clinker nodules produced by sintering at 1450 °C. This is the intermediate process for the production of cement

The clinker is initially very hot and contains small, dark gray nodules from 1mm to 25mm in size where it is placed into a grate cooler for cooling from approximately 2550 °F to approximately 240 °F via the use of cooling fans.

And voila! You have cement!

Final Note

Other elements are added to the clinker depending upon what the cement is going to be used for. In the case of Portland cement, gypsum is the additive.

And you thought that making cement was just adding powder and water. We hope you gained some good knowledge as to how cement is actually created. And the next time you get angry after you trip over a block that’s made up of limestone and clay, you know that it is concrete you take your anger out on and not the cement that put it together.

 

 

 

How Buildings are Constructed Along Earthquake Fault Lines

Transamerica Pyramid San Francisco
Earthquake resistant Transamerica Pyramid, San Francisco. Photo Wikimedia CC

One of the first structures built to withstand an earthquake was the Transamerica Pyramid, also called the Transamerica Tower. In this seismically active region, no engineering was spared to keep the building safe from earthquake tremors.

Located on 600 Montgomery Street, it rises 853 feet and 48 floors and was the eighth tallest building in the world in 1972. On the highest floor, 48, there is a conference room that has unobstructed 360-degree views of the San Francisco Bay area.

The building has a wide base that narrows upwards, much like the churches and buildings of antiquity, which is designed to give the structures their stability. No doubt this is an optimum method for buildings that reside along earthquake fault lines. From an environmental perspective, the pyramid design (hence the name), allows natural light to filter down to the streets below.

Looking to limit the degree by which the structure would twist and shake during an earthquake, engineers used a unique truss system with built-in steel, reinforced concrete, precast quartz aggregate and glass. It has two angular setbacks working their way up to the top of the tower and a 212-foot spire. There are two angular concrete structures on the east and west sides that protrude from the 29th floor rising upwards called wings. The wings are part of the structural engineering that went in to keep the building sturdy during an earthquake, but they also have a function. The eastern wing serves as an elevator and the western wing includes a staircase.

To reinforce the building even more, there is a truss system on the ground and lower floors which are designed to support both vertical and horizontal stresses. Truss designs are cross beams engineered to perfectly distribute the weight of a structure in order to withstand tension (pulling) and compression (pulling) forces.

Modern building with external truss system
Buildings with external truss systems are able to manage torsional (twisting) forces generated by seismic events. Photo by Ricardo Gomez Angel on Unsplash

Under the truss, beams are X beams over the ground floor, designed to brace the building against any type of torque movement.

This torque and stress reinforcement was tested in 1989 during the .71 magnitude Loma Prieta earthquake. The building successfully withstood the quake with no damage and no injuries.

 

In addition to above-ground stress reinforcement, there is an additional basement from earthquake tremors, consisting of a 9-foot deep concrete mat foundation, which lies on top of a steel and concrete block that goes 52 feet underground. This foundation contains 16,000 cubic yards of reinforced concrete, including over 300 miles of steel reinforcing rods. This concrete assists with the additional support of Compressive stress and tensile stress.

The Pyramid is a self-contained structure, which has its own 1.1-megawatt power system. Construction began in the fall of 1969 with the first tenant moving in in 1972 and is still standing gracefully today as a monument to earthquake building construction.

 

Howard Fensterman Minerals